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Mathematics 
 
 To fully understand vectors, we first need to have a look about the mathematics and 
physics aspect of them.  Vectors are defined as being quantities that can be broken down into 
components.  A vector also has magnitude and direction.  In mathematics, we look at vectors in 
an X-Y Coordinate system. 

 
  
 The above figure shows the vector in an X-Y Coordinate System.  The vector, designated 
�⃗�𝑣, has two components X and Y.  The X component holds the X position, and the Y component 
holds the Y position.  Most of your games will implement this approach.  Games operate a bit 
differently than the standard coordinate system.  Let’s see what a vector looks like in the 
game’s coordinate system.  

𝑿𝑿 

𝒀𝒀 
𝒗𝒗��⃗  

Figure 1 – Vector Diagram in X-Y System 
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 The only difference here is the positive Y is pointing down instead of up.  If you have 
done any game programming and experimenting, you would know that +Y is down, and –Y is up 
in games. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

𝑿𝑿�  

𝒀𝒀 �
 𝒗𝒗��⃗  

Figure 2 – Vector Diagram in XNA System 
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Notation 
 
 When you look at a vector in a mathematics or physics book, they show the 
components.  Notation is very important for vectors.  It allows us to see what each component 
is in a simple way.  There are several ways to look at a vector, and I will list the three most 
common ways.  Depending on what book, website, or program you are running, you might find 
the vector representation different.  We represent any given vector as v or 𝒗𝒗��⃗ , I will use the 
notation with the arrow.  Vectors can be any letter or combination of letters.  Later on I will use 
more vectors, so I will use different letters.  So here are the three most common ways to 
represent vectors in 2D (for 3D simply add a Z to the components).   
 
Ordered Set Notation 
𝒗𝒗��⃗ =  (𝑥𝑥,𝑦𝑦) 
𝒗𝒗��⃗ =  〈𝑥𝑥,𝑦𝑦〉 
X and Y are components of V 

 
Matrix Notation 
𝒗𝒗��⃗ =  [𝑥𝑥 𝑦𝑦] 

𝒗𝒗��⃗ =  �
𝑥𝑥
𝑦𝑦� 

X and Y are components of V 

 
Engineering/Physics Notation 

A vector in engineering or physics is represented with unit vectors �̂�𝒊, 𝒋𝒋̂, and 𝒌𝒌� (k is for 3D) 
�̂�𝒊 = (1, 0) 
𝒋𝒋̂ = (0, 1) 
𝒗𝒗��⃗ =  𝑥𝑥�̂�𝒊 + 𝑦𝑦𝒋𝒋̂ 
X and Y are components of V 
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3-Dimensional Vectors 
Note:  Skip this section is you are only interested in 2D vectors and games for now. 

 
 2D is all fine and good, but what about 3D?  3-Dimensional vectors operate the same 
way, except a new component is added for depth 𝒁𝒁.  There is no standard 3-dimensional 
diagram to follow; some books have the 3D coordinate system set one way, where other books 
have it set another.  I will use the DirectX way to illustrate a 3D vector, instead of showing you 
the mathematic way first which would only complicate things.  This version also makes the 
most sense with Z pointing away from the user (negative Z pointing toward the user).  This is 
known as the Left-handed Cartesian Coordinate System.  The Right Handed version has the Z 
pointing the opposite way. 
 

 
 
 
 Now let’s illustrate a point on the coordinate system.  We need to throw some variables 
out in order to illustrate this properly.  Now if P is any given point, we let a be the distance 
along the X-axis, let b be the distance along the Y-axis, and we let c be the distance along the Z-
axis. 
 
 

Figure 3 – DirectX 3D Coordinate System 

𝑥𝑥 

𝑦𝑦 

𝑧𝑧 
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 It is very difficult to illustrate a 3D diagram properly on a 2D plane (monitor or paper).  
Let’s take a look at two diagrams.  One will have a z component of 0, the other will combine the 
two.  We will keep X and Y as a and b respectively. 

 
Figure 5 – Point with a Zero Z Component 

𝑥𝑥 

𝑧𝑧 

𝑦𝑦 

𝑎𝑎 

𝑏𝑏 

𝑝𝑝(𝑎𝑎, 𝑏𝑏, 0) 

Figure 4 – General Point in 3D 

𝑥𝑥 

𝑧𝑧 

𝑦𝑦 

𝑎𝑎 

𝑏𝑏 

𝑐𝑐 

𝑝𝑝(𝑎𝑎, 𝑏𝑏, 𝑐𝑐) 
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 As the Z component of the point increases, the size of the object decreases.  Again, it is 
very difficult to illustrate this on paper, just experiment with the 3D space as much as you can.  
Just remember, as Z increases, the object will get smaller.  Let’s take a look at a final figure 
showing several points in a rectangular box.  This gives us an even better glace at the 3D side. 

 
Figure 7 – Several Points in a Rectangular Box 

𝑥𝑥 

𝑧𝑧 

𝑦𝑦 

𝑎𝑎 

𝑏𝑏 

𝑝𝑝1(𝑎𝑎, 𝑏𝑏, 0) 

𝑝𝑝2(𝑎𝑎, 𝑏𝑏, 𝑐𝑐) 
𝑐𝑐 

(0, 𝑏𝑏, 𝑐𝑐) 

(0, 𝑏𝑏, 0) 

(0, 0, 𝑐𝑐) 

(0, 0, 0) (𝑎𝑎, 0, 0) 

(𝑎𝑎, 0, 𝑐𝑐) 

Figure 6 – Combination of both points 

𝑥𝑥 

𝑧𝑧 

𝑦𝑦 

𝑎𝑎 

𝑏𝑏 

𝑝𝑝1(𝑎𝑎, 𝑏𝑏, 0) 

𝑝𝑝2(𝑎𝑎, 𝑏𝑏, 𝑐𝑐) 
𝑐𝑐 
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Let’s finally look at vectors in 3D instead of general points.  We will look at the first point 
in vector form.  We will write any given vector as 𝒗𝒗��⃗  with components 𝒗𝒗𝑥𝑥 , 𝒗𝒗𝑦𝑦 , and 𝒗𝒗𝑧𝑧 . 

 
 

  
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8 – General Vector in 3D 

𝑥𝑥 

𝑧𝑧 

𝑦𝑦 

𝒗𝒗𝒙𝒙 

𝒗𝒗𝑦𝑦  

𝒗𝒗𝑧𝑧  

𝒗𝒗��⃗  
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Vector Operations 
  
 Now that you saw visuals of vectors and are fairly confident that you have the basics 
down, let’s take a look at the operations and properties of vectors.  Some of this stuff will get a 
bit “mathy”, so if you are not that into math, you can pick and choose what operations you 
want.  This section is mostly for those that are curious as to how vectors work.  If you do not 
care about the math, at least check out the dot product and cross product sections, as they will 
prove useful in more complicated games.  I will put the most important things in a red box, and 
proofs in blue boxes.  All figures will be in 2D, but math will be in both most of the time.  Keep 
in mind, whatever vectors I use here can have any label you choose, including subscripts.  I am 
just using generic labels.  Also, a scalar in math is any number that cannot be resolved into 
components (3 is a scalar, so is 18.654). 
 

Vector Addition and Scalar Multiplication 

If 𝒂𝒂��⃗ = 〈𝑎𝑎𝑥𝑥 , 𝑎𝑎𝑦𝑦〉, 𝒃𝒃��⃗ = 〈𝑏𝑏𝑥𝑥 , 𝑏𝑏𝑦𝑦〉, and 𝑐𝑐 is any given scalar 

 

𝒂𝒂��⃗ + 𝒃𝒃��⃗ = 〈𝑎𝑎𝑥𝑥 + 𝑏𝑏𝑥𝑥 ,𝑎𝑎𝑦𝑦 + 𝑏𝑏𝑦𝑦〉                                 𝒂𝒂��⃗ − 𝒃𝒃��⃗ = 〈𝑎𝑎𝑥𝑥 − 𝑏𝑏𝑥𝑥 ,𝑎𝑎𝑦𝑦 − 𝑏𝑏𝑦𝑦〉 
𝑐𝑐𝒂𝒂��⃗ =  〈𝑐𝑐𝑎𝑎𝑥𝑥 , 𝑐𝑐𝑎𝑎𝑦𝑦〉 

 

If 𝒂𝒂��⃗ = 〈𝑎𝑎𝑥𝑥 , 𝑎𝑎𝑦𝑦 ,𝑎𝑎𝑧𝑧〉, 𝒃𝒃��⃗ = 〈𝑏𝑏𝑥𝑥 ,𝑏𝑏𝑦𝑦 , 𝑏𝑏𝑧𝑧〉, and 𝑐𝑐 is any given scalar 

 

𝒂𝒂��⃗ + 𝒃𝒃��⃗ = 〈𝑎𝑎𝑥𝑥 + 𝑏𝑏𝑥𝑥 ,𝑎𝑎𝑦𝑦 + 𝑏𝑏𝑦𝑦 ,𝑎𝑎𝑧𝑧 + 𝑏𝑏𝑧𝑧〉  
𝒂𝒂��⃗ − 𝒃𝒃��⃗ = 〈𝑎𝑎𝑥𝑥 − 𝑏𝑏𝑥𝑥 ,𝑎𝑎𝑦𝑦 − 𝑏𝑏𝑦𝑦 ,𝑎𝑎𝑧𝑧 − 𝑏𝑏𝑧𝑧〉 

𝑐𝑐𝒂𝒂��⃗ =  〈𝑐𝑐𝑎𝑎𝑥𝑥 , 𝑐𝑐𝑎𝑎𝑦𝑦 , 𝑐𝑐𝑎𝑎𝑧𝑧〉 
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Graphically Combining Vectors 
When you do any form of programming, you should test most things on paper before 

you code them.  One of those things will be combining vectors for positioning.  There are two 
ways to combine vectors graphically.  If we have vectors 𝒖𝒖��⃗  and 𝒗𝒗��⃗ , we move 𝒗𝒗��⃗  so it’s tail is 
connected to the tip of 𝒖𝒖��⃗  and define the sum of 𝒖𝒖��⃗  and 𝒗𝒗��⃗  as the vector from the initial point of 𝒖𝒖��⃗  
to the terminating point of 𝒗𝒗��⃗ . 

 
 
 The other way to combine two vectors is to have both 𝒖𝒖��⃗  and 𝒗𝒗��⃗  start at the same place, 
copy the 𝒖𝒖��⃗  vector and place its tail to the end of 𝒗𝒗��⃗ , copy 𝒗𝒗��⃗  and place its tail at the end of 𝒖𝒖��⃗ , and 
finally, the sum of 𝒖𝒖��⃗  and 𝒗𝒗��⃗  is the diagonal of the parallelogram. 

Figure 9 – Combining Vectors (Triangle Law) 

𝑥𝑥 

𝑦𝑦 

𝒖𝒖��⃗  

𝒗𝒗��⃗  𝒖𝒖��⃗ + 𝒗𝒗��⃗  
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 Subtracting vectors requires one additional step.  If we have two vectors 𝒖𝒖��⃗  and 𝒗𝒗��⃗  and 
subtract 𝒗𝒗��⃗  from 𝒖𝒖��⃗ , the result would be 𝒖𝒖��⃗ − 𝒗𝒗��⃗  as shown in the algebraic section.  We can also 
write this operation a second way 𝒖𝒖��⃗ + (−𝒗𝒗��⃗ ), this means exactly the same thing, but allows us 
to graphically combine them easier.  The easier way of the two is the Parallelogram Law, so that 
is what I will cover for subtraction. 

 
 

Figure 11 – Subtracting Vectors (Parallelogram Law) 

𝑥𝑥 

𝑦𝑦 

𝒖𝒖��⃗  𝒗𝒗��⃗  

𝒖𝒖��⃗ − 𝒗𝒗��⃗  

𝒖𝒖��⃗  copy 

−𝒗𝒗��⃗  copy 

−𝒗𝒗��⃗  

Figure 10 – Combining Vectors (Parallelogram Law) 

𝒖𝒖��⃗  

𝑥𝑥 

𝑦𝑦 

𝒗𝒗��⃗  
𝒖𝒖��⃗ + 𝒗𝒗��⃗  

𝒖𝒖��⃗  copy 

𝒗𝒗��⃗  copy 
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Vector Between Points 
Sometimes you want an object to follow the other.  There are complicated ways of doing this, 
and easier ways.  The easiest ways to do this is to grab a vector that goes from point A to point 
B (or two other vectors) and normalize, which we will get into later.  This is not built in, so you 
will need to do this manually.  Here is how to create a vector between two points or two other 
vectors. 
 

      
     Given the vectors 𝒂𝒂��⃗ = 〈𝑎𝑎𝑥𝑥 ,𝑎𝑎𝑦𝑦 , 𝑎𝑎𝑧𝑧〉 and 𝒃𝒃��⃗ = 〈𝑏𝑏𝑥𝑥 , 𝑏𝑏𝑦𝑦 , 𝑏𝑏𝑧𝑧〉, the vector 𝒗𝒗��⃗  

represents the vector between 𝒂𝒂��⃗  and 𝒃𝒃��⃗ . 
 

𝒗𝒗��⃗ = 〈𝑏𝑏𝑥𝑥 − 𝑎𝑎𝑥𝑥 , 𝑏𝑏𝑦𝑦 − 𝑎𝑎𝑦𝑦 , 𝑏𝑏𝑧𝑧 − 𝑎𝑎𝑧𝑧〉 
 
For two-dimensions: 

𝒗𝒗��⃗ = 〈𝑏𝑏𝑥𝑥 − 𝑎𝑎𝑥𝑥 , 𝑏𝑏𝑦𝑦 − 𝑎𝑎𝑦𝑦〉 
 

 

 
Figure 12 – Calculating a Vector Between Two Points 

𝑥𝑥 

𝑦𝑦 

𝒂𝒂��⃗  

𝒃𝒃��⃗  𝒗𝒗��⃗  

𝒂𝒂𝒙𝒙 

𝒂𝒂𝒚𝒚 

𝒃𝒃𝒙𝒙 

𝒃𝒃𝒚𝒚 

𝒃𝒃𝒙𝒙 − 𝒂𝒂𝒙𝒙 

𝒃𝒃𝒚𝒚 − 𝒂𝒂𝒚𝒚 
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Vector Magnitude 
A vector’s magnitude, also known as the length, is the value of the longest side of the vector (in 
2D, this is the diagonal).  You can use this to calculate the distance an object has traveled 
(collision detection correction), or to determine an objects speed or acceleration.  The notation 
for length for any given vector is |𝒗𝒗��⃗ | or ‖𝒗𝒗��⃗ ‖. 
 

      
     For two-dimensions, a vector 𝒂𝒂��⃗ = 〈𝑎𝑎𝑥𝑥 ,𝑎𝑎𝑦𝑦〉 has a length of 

|𝒂𝒂��⃗ | = �𝑎𝑎𝑥𝑥2 + 𝑎𝑎𝑦𝑦2  

     For three-dimensions, a vector 𝒂𝒂��⃗ = 〈𝑎𝑎𝑥𝑥 , 𝑎𝑎𝑦𝑦 ,𝑎𝑎𝑧𝑧〉 has a length of 

|𝒂𝒂��⃗ | = �𝑎𝑎𝑥𝑥2 + 𝑎𝑎𝑦𝑦2 + 𝑎𝑎𝑧𝑧2 

 
 
 
 
 

Math Examples 
Skip this if you are not that interested in the math. 
 

If 𝒂𝒂��⃗ = 〈4, 7〉 and 𝒃𝒃��⃗ = 〈3, 2〉, find the following: 

|𝒂𝒂��⃗ | = �42 + 72 = √𝟔𝟔𝟔𝟔 ≈ 𝟖𝟖.𝟎𝟎𝟔𝟔𝟎𝟎 
 

𝒂𝒂��⃗ + 𝒃𝒃��⃗ = 〈4, 7〉 + 〈3, 2〉 = 〈4 + 3, 7 + 2〉 = 〈𝟕𝟕,𝟗𝟗〉 
 

3𝒂𝒂��⃗ = 3〈4, 7〉 = 〈3(4), 3(7)〉 = 〈𝟏𝟏𝟎𝟎,𝟎𝟎𝟏𝟏〉 
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Vector Normalizing 
To normalize a vector, you must turn it into a unit vector, which is a vector with a length of 1.  
This is essential to create objects that follow another so it will not jump to the destination right 
away.  All you need to do is simply divide the entire vector by the length.  Here is how you can 
calculate the unit vector of any given vector. 
 

      
     If 𝒗𝒗��⃗  is any given vector, then let 𝒖𝒖��⃗  be its unit vector. 

𝒖𝒖��⃗ =
1

|𝒗𝒗��⃗ |𝒗𝒗��⃗ =
𝒗𝒗��⃗

|𝒗𝒗��⃗ | 

 
|𝒖𝒖��⃗ | = 1 

 
 
Just for fun, I will prove that the length of the unit vector is indeed 1 
 

 
Proof:  If 𝒗𝒗��⃗  is any given vector, then let 𝒖𝒖��⃗  be its unit vector. 

|𝒖𝒖��⃗ | = �
1
𝒗𝒗��⃗
𝒗𝒗��⃗ � = �

1
𝒗𝒗��⃗
� |𝒗𝒗��⃗ | =

1
|𝒗𝒗��⃗ |

|𝒗𝒗��⃗ | =
|𝒗𝒗��⃗ |
|𝒗𝒗��⃗ | = 1 
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Finding the Angle of a Vector 
This is another important aspect of vectors and gaming, especially 2D.  You want objects to 
rotate in 2D, maybe not all, but at least a few objects.  When an object follows another, you do 
not want that object to always look up; it should be looking at the object it is following.  We do 
this using trigonometry.  Do not worry if you are not that good with math, I will explain and 
show you how.  Any given vector has an angle attached to it, which is what makes a vector a 
vector by definition.  This is also not built in.  So let’s see any given vector with any given angle 
(we use 𝜃𝜃 (theta) for any given angle) 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 13 – The Angle of Any Given Vector 

𝒗𝒗𝒙𝒙 
𝑥𝑥 

𝑦𝑦 

𝒗𝒗��⃗  

𝒗𝒗𝒚𝒚 

𝜃𝜃 
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 The angle is very simple to find if you know a few other parts of the vector.  There are 
several ways to find the angle.  The first way is the most common in game programming, and 
the one you will probably use 90% of the time. 
 

 
     For any given vector 𝒗𝒗��⃗ , its angle 𝑣𝑣𝜃𝜃  can be determined one of three ways. 
 

𝑣𝑣𝜃𝜃 = tan−1 �
𝑣𝑣𝑦𝑦
𝑣𝑣𝑥𝑥
� 

𝑣𝑣𝜃𝜃 = cos−1 �
𝑣𝑣𝑥𝑥
|𝒗𝒗��⃗ |� 

𝑣𝑣𝜃𝜃 = sin−1 �
𝑣𝑣𝑦𝑦
|𝒗𝒗��⃗ |� 

 
 
Sometimes you will have the angle and some components, but you wish to find the others.  Below is a 
listing on how to find a component using the angle. 
 

 
Trigonometry Functions 

tan 𝜃𝜃 = �
𝑣𝑣𝑦𝑦
𝑣𝑣𝑥𝑥
� 

cos 𝜃𝜃 = �
𝑣𝑣𝑥𝑥
|𝒗𝒗��⃗ |� 

sin𝜃𝜃 = �
𝑣𝑣𝑦𝑦
|𝒗𝒗��⃗ |� 

 
Finding Vector Components from Trig. Functions 

𝑣𝑣𝑥𝑥 tan 𝜃𝜃 = 𝑣𝑣𝑦𝑦  

 
𝑣𝑣𝑦𝑦

tan 𝜃𝜃
= 𝑣𝑣𝑥𝑥  

 
|𝒗𝒗��⃗ | cos 𝜃𝜃 =  𝑣𝑣𝑥𝑥  

 
𝑣𝑣𝑥𝑥

cos𝜃𝜃
= |𝒗𝒗��⃗ | 

 
|𝒗𝒗��⃗ | sin𝜃𝜃 = 𝑣𝑣𝑦𝑦  

 
𝑣𝑣𝑦𝑦

sin𝜃𝜃
= |𝒗𝒗��⃗ | 
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The Dot Product 
Now we get to the good stuff.  The only way to multiply two vectors together is to use 

the dot product.  When we multiply two vectors together using the dot product, the end result 
is a scalar not a vector.  So let’s see how it is done! 
 

 
     For any two given vectors, �⃗�𝑣 = 〈𝑣𝑣𝑥𝑥 , 𝑣𝑣𝑦𝑦 , 𝑣𝑣𝑧𝑧〉 and 𝑢𝑢�⃗ = 〈𝑢𝑢𝑥𝑥 ,𝑢𝑢𝑦𝑦 ,𝑢𝑢𝑧𝑧〉, then the 
dot product of �⃗�𝑣 and 𝑢𝑢�⃗  is given by �⃗�𝑣 • 𝑢𝑢�⃗ . 
 

�⃗�𝑣 • 𝑢𝑢�⃗ = 𝑣𝑣𝑥𝑥𝑢𝑢𝑥𝑥 + 𝑣𝑣𝑦𝑦𝑢𝑢𝑦𝑦 + 𝑣𝑣𝑧𝑧𝑢𝑢𝑧𝑧  
 
     For two-dimensional vectors, �⃗�𝑣 = 〈𝑣𝑣𝑥𝑥 , 𝑣𝑣𝑦𝑦〉 and 𝑢𝑢�⃗ = 〈𝑢𝑢𝑥𝑥 ,𝑢𝑢𝑦𝑦〉. 
 

�⃗�𝑣 • 𝑢𝑢�⃗ = 𝑣𝑣𝑥𝑥𝑢𝑢𝑥𝑥 + 𝑣𝑣𝑦𝑦𝑢𝑢𝑦𝑦  
 

 
We can also use the angle when computing the dot product of two vectors.  Keep in 

mind the angle has to be the angle between the two vectors.  Let’s see how this works in a 
visual first.  

 
 
 
 
 

𝑢𝑢𝜃𝜃  

Figure 14 – The Angle between Vectors 

𝑥𝑥 

𝑦𝑦 

𝜃𝜃 

�⃗�𝑣 

𝑢𝑢�⃗  

𝑣𝑣𝜃𝜃  
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     For two any given vectors, �⃗�𝑣 and 𝑢𝑢�⃗ , there exists an angle, 𝜃𝜃, between 
them.  Then 
 

�⃗�𝑣 • 𝑢𝑢�⃗ = |�⃗�𝑣||𝑢𝑢�⃗ | cos𝜃𝜃 
 
     Changing things around a bit we get this corollary 
 

�⃗�𝑣 • 𝑢𝑢�⃗
|�⃗�𝑣||𝑢𝑢�⃗ | = cos 𝜃𝜃 

 
     Finally, 

𝜃𝜃 = cos−1 �
�⃗�𝑣 • 𝑢𝑢�⃗
|�⃗�𝑣||𝑢𝑢�⃗ |� 
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The Cross Product 
Another method of multiplying vectors is the cross product, and it very useful for only 

three-dimensional vectors (sorry 2D readers).  Unlike the dot product, this method is a vector.  
The cross product is a very long process to get to the formula from the beginning, so I will just 
jump straight to the formula this time. 
 

 
     Given the vectors �⃗�𝑎 = 〈𝑎𝑎𝑥𝑥 ,𝑎𝑎𝑦𝑦 , 𝑎𝑎𝑧𝑧〉 and 𝑏𝑏�⃗ = 〈𝑏𝑏𝑥𝑥 , 𝑏𝑏𝑦𝑦 , 𝑏𝑏𝑧𝑧〉, the cross product 

of �⃗�𝑎 and 𝑏𝑏�⃗  is the vector 
 

�⃗�𝑎 × 𝑏𝑏�⃗ = 〈𝑎𝑎𝑦𝑦𝑏𝑏𝑧𝑧 − 𝑎𝑎𝑧𝑧𝑏𝑏𝑦𝑦 ,𝑎𝑎𝑧𝑧𝑏𝑏𝑥𝑥 − 𝑎𝑎𝑥𝑥𝑏𝑏𝑧𝑧 , 𝑎𝑎𝑥𝑥𝑏𝑏𝑦𝑦 − 𝑎𝑎𝑦𝑦𝑏𝑏𝑥𝑥〉 
 
    Fun fact:  �⃗�𝑎 and 𝑏𝑏�⃗  are parallel if and only if 
 

�⃗�𝑎 × 𝑏𝑏�⃗ = 0 
 

 
There are a few more mathematic aspects of Vectors, but you do not need to worry 

about these when writing games, unless they are very complicated.  If you want to learn more, 
check out a Calculus or higher level math books for more information. 
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The Fourth Dimension 
XNA comes with a 4-dimensional vector (Vector4) class to use with your games.  What is 

the fourth-dimension you might ask?  Well it has two definitions.  A fourth-dimension is a 
three-dimensional space with an extra dimension (obvious I know).  This dimension is either 
considered an extra space dimension, or more commonly considered as time (also known as 
Minkowski spacetime).  Einstein used this space in his theories of general relativity and special 
relativity.  I will not go into how to implement this in your games, mostly because I have not 
gone into 4D spacetime yet, but it would be an interesting game to have implemented a 4D 
with time component properly.  Search online for the fourth dimension or spacetime if this 
interests you.  Of course you can use the Vector4 class for other things in your game like 
holding window dimensions. 
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XNA 
Most of the stuff I covered above has already been implemented in the appropriate 

Vector classes.  I do not want to list every single method and property in each vector class, but I 
will highlight what I have covered above.  Take a look at the following cheat sheet for vectors. 
 

Class - Vector2 
Let v be an object of Vector2 

v.Length() Returns the length of the vector 
v.LengthSquared() Returns the squared length of the vector. 
v.Normalize() Makes the length of the vector 1 
Vector2.Add(Vector2, 
Vector2) 

Returns the result of adding the two vectors 

Vector2.Subtract(Vector2, 
Vector2) 

Returns the result of subtracting the two vectors. 

Vector2.Distance(Vector2, 
Vector2) 

Returns the float distance of the two vectors. 

Vector2.Dot(Vector2, 
Vector2) 

Performs the dot product of two vectors and returns the result. 

 
 The Vector3 class has all the above, but with a few more things including the cross 
product. 
 

Class – Vector3 
Let v be an object of Vector3 

Vector3.Cross(Vector3, 
Vector3) 

Returns the cross product of the two vectors. 

 
Play around with vectors until you understand them.   
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End of Guide 
 This is the end of the Vectors guide.  I hope you understand the insides of how vectors 
work and what cool things they can do.  The math portion was mainly meant for curious 
readers and those wanting to build off the Vector class, or create your own.  As always, play 
around with vectors as much as you can to fully understand them.  They are quite extraordinary 
for gaming. 


